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Background: Cervical spine injuries (CSI) are a major concern in young pediatric trauma patients. The conse-
quences of missed injuries and difficulties in injury clearance for non-verbal patients have led to a tendency to
image young children. Imaging, particularly computed tomography (CT) scans, presents risks including
radiation-induced carcinogenesis. In this study we leverage machine learning methods to develop highly accu-
rate clinical decision rules to predict pediatric CSI.
Methods: The PEDSPINE I registrywas used to investigate CSI in blunt traumapatients under the age of three. Pre-
dictivemodelswere built using Optimal Classification Trees, a novel machine learning approach offering high ac-
curacy and interpretability, as well as other widely used machine learning methods.
Results: The final Optimal Classification Trees model predicts injury based on overall Glasgow Coma Score (GCS)
and patient age. Thismodel has a sensitivity of 93.3% and specificity of 82.3% on the full dataset. It has comparable

or superior performance to other machine learning methods as well as existing clinical decision rules.
Conclusions: This study developed a decision rule that achieves high injury identification while reducing unnec-
essary imaging. It demonstrates the value of machine learning in improving clinical decision protocols for pedi-
atric trauma.
Type of study: Retrospective Prognosis Study.
Level of evidence: II

© 2019 Elsevier Inc. All rights reserved.
Data-driven protocols offer an evidence-based and objective ap-
proach to diagnosis and treatment decisions [1,2]. These advantages
are especially relevant in the chaos and emotion of the emergency
room. Trauma physicians treat a broad range of patient conditions and
mustmake treatment decisions quickly, oftenbased on limited informa-
tion. The use of clinical decision rules, in tandemwith a physician's indi-
vidual instincts, improves consistency in this high-stress environment.

State-of-the-art machine learning methods, such as Artificial Neural
Networks (ANN) and Gradient-Boosted Trees, have been introduced to
a variety of clinical settings [3–6]. They have attracted much attention
owing to their ability to parse through large quantities of data and cap-
ture complex trends between covariates inways that outperform previ-
ously existing methods. However, these recently emergent methods
suffer from a lack of interpretability, which is problematic in a clinical
setting in which the rationale behind treatment decisions is critical.
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Τhis has prompted debate as to the benefits and risks of employing
such methods in the field [7,8].

The Optimal Classification Trees (OCT) algorithm addresses these is-
sues through the construction of highly accurate and readily interpret-
able decision trees using an optimization approach, making it a strong
fit for medical decision making [9]. This has been successfully applied
in clinical settings, from oncology to pediatric surgery [10,11], and we
now introduce it to the pediatric trauma space through the study of cer-
vical spine injury (CSI).

Although the incidence of CSI in blunt trauma patients is low (b2%)
[12], the risks of missed injuries lead physicians to be cautious in injury
clearance and result in high reliance on imaging, including computed
tomography (CT) [13]. Nevertheless, heavy dependence on imaging
does come with risks of its own. Previous research has established the
potential carcinogenic effects of radiation exposure from CT scans
[14–17]. In addition, concerns about resource consumption, costs, and
sedation risks have brought attention to the liberal use of imaging
more broadly [18–20].

Several protocols have been developed for CSI clearance in both
adult and pediatric settings [21–23], but these do not extend well to
very young children who lack verbal cues and have different injury
risk profiles. Our group constructed a multisite registry of over 12,000
 Jerusalem from ClinicalKey.com by Elsevier on September 
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Table 1
Comparison of patient features and imaging decisions by injury status.

Uninjured (N = 9533) Injured (N = 119)

Demographics
Age 1.3 (1.0–2.0) 2.0 (1.0–2.6)
Male (%) 5578 (58.5%) 70 (58.8%)

GCS scores

GCS eye 4 (4–4) 1 (1–4)
GCS verbal 5 (5–5) 1 (1–4)
GCS motor 6 (6–6) 2 (1–4)
GCS total 15 (15–15) 5 (3–11)

Injury type

Abuse (%) 555 (0.6%) 6 (0.5%)
Fall (%) 3855 (40.4%) 24 (20.2%)
MVA (%) 2396 (25.1%) 65 (54.6%)
Other (%) 2727 (28.6%) 14 (11.8%)

Imaging Decisions

CT scan (%) 1722 (18.1%) 78 (65.5%)
MRI (%) 203 (2.1%) 39 (32.8%)
X-ray (%) 1577 (16.5%) 51 (42.9%)
Overall (%) 2735 (28.7%) 102 (85.7%)

Reported values are medians with interquartile ranges or frequencies with percentages.
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pediatric patients under the age of 3. Using this datasetwe proposed the
PEDSPINE criteria, a logistic-regression basedmodel that determines CSI
risk using Glasgow Coma Score, patient age, and mechanism of injury
[12]. Anderson et al. [24] proposed another protocol for the same age
group, but this relies on initial X-ray screening and provides no quanti-
tative decision rule for injury clearance.

The aim of this post-hoc analysis of the PEDSPINE registry is to vali-
date and refine existing protocols for young pediatric patients
(0–3 years old) using modern machine learning methods. A cervical
spine injury clearance decision rule is constructed using OCT, providing
highly accurate and interpretable predictions that offer potential to re-
duce unnecessary imaging.

1. Methods

1.1. Study population

The PEDSPINE I database was queried for this study [12]. This inter-
national registry includes data on young pediatric patients (b3 years
old) that were treated for blunt trauma in 22 trauma centers across
the United States, Canada, and Brazil. Of these sites, 15 are pediatric
level I trauma centers, six are level I adult trauma centers treating pedi-
atric patients, and one is a level II adult trauma center. Deaths are omit-
ted from the dataset since these records are generally incomplete and
lack information on cervical spine injury.

1.2. Data and outcome measures

The PEDSPINE I registry includes several covariates for each trauma
patient. Age and genderwere reported for demographic features. In addi-
tion, the GlasgowComa Score (separated into Eye, Verbal, andMotor sub-
scores) andmechanism of injury (categorized asmotor vehicle crash, fall,
abuse, or other) were reported. Features that would not be known at the
time of initial patient evaluation were excluded from the model, such as
injury severity score, imaging results, and length of stay.

1.3. Machine learning analysis

1.3.1. Optimal trees
The OCT algorithm was used to develop the predictive model. OCTs

build decision trees which optimize a specified loss function, with an ad-
ditional complexity penalty to control the tree size. Each tree node is ei-
ther a split node, which is characterized by a feature and threshold, or a
leaf node, which is the terminal point for an observation and provides
the predicted class label. The covariates and outcomes are given as inputs
to the model, and the resultant model predicts a class label for each pa-
tient as injured or uninjured. This translates to imaging recommenda-
tions: patients predicted to be injured should be imaged, whereas those
predicted to be uninjured statistically do not require imaging and in the
clinical setting may be eligible to avoid an unnecessary procedure.

OCT improves upon CART, a tree-based method popularized in the
1980s, in that the decisions consider the tree's global structure while
CART constructs a greedy decision tree [25]. The OCT algorithm is initial-
izedwith a greedy tree and then searches for improvements to the global
objective by visiting nodes in a randomorder and considering various tree
modifications. For leaf nodes, the algorithm considers the creation of a
split at the leaf. For split nodes, it considers deleting the split or replacing
itwith a different split. The algorithm continues to consider nodes one-at-
a-time until no more improvements are found. The full process is re-
peated with many random starts, and the tree with the lowest overall
loss objective is selected as the final decision tree.

1.3.1.1. Model criterion. The OCT model was trained using the weighted
misclassification rate as the loss function to beminimized. The standard
misclassification rate is defined as the proportion of observations that
are assigned the incorrect class label. This original metric is limited in
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that it does not reflect the fact that in our decision setting, false nega-
tives are more problematic than false positives. In other words, it is
worse to miss an injury than to misclassify someone as injured.

To reflect the priority toward injury identification, a weighted mis-
classification rate is used as the loss function. Suppose there are N pa-
tients, and the false positive (assigned “injured” label, but actually
uninjured) and false negative (assigned “uninjured” label, but actually
injured) counts are given as FP and FN, respectively. Given a weight w
for missed injuries, the loss is computed as:

loss ¼ FPþw � FN
N

The weight parameter represents the additional penalty on missed
injuries. As the weight increases, the model favors more false positives
than false negatives, resulting in more liberal injury predictions but
fewer missed injuries.

1.3.2. Gradient-boosted trees
A gradient-boosted tree algorithm, introduced by Friedman, uses the

ideas of boosting and gradient-descent to achieve higher predictive ac-
curacy than traditional greedy tree-based methods [26]. Rather than
fitting a single greedy tree and predicting a class label based on the
observation's assigned leaf, this algorithm takes an iterative approach;
at each stage, a new tree is trained tofit the prediction error that persists
from previous trees, and the final predicted injury probabilities are
made based on a linear combination of the individual trees. The proba-
bility threshold for labeling patients as injured was chosen to minimize
the weighted misclassification criterion described in Section 1.3.1.1.
While gradient-boosted trees have become popular in the machine
learning community owing to their strong predictive performance,
they lack interpretability and offer little visibility into the underlying
mechanisms of predictions. The model in this paper was constructed
using the xgboost package in R [27].

1.3.3. Logistic regression
A logistic regressionmodel was also fit to provide a basis of compar-

ison for model performance. As with gradient-boosted trees, the proba-
bility threshold for injury was chosen to minimize the weighted
misclassification rate.

2. Results

2.1. Study population and characteristics

Our dataset included 9652 patients, of which 119 (1.23%) had a cer-
vical spine injury and the remaining did not. Table 1 provides a sum-
mary of patient features by injury status. Seventy-eight (65.55%) of
f Jerusalem from ClinicalKey.com by Elsevier on September 
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Table 2
Comparison of imaging rates by hospital type.

Hospital type N (i) Imaging rates

CT MRI X-ray Overall

All Sites 9652 (119) 1800 (18.6%) 242 (2.5%) 1628 (16.9%) 2837 (29.4%)
Pediatric level I 5374 (63) 721 (13.4%) 134 (2.5%) 1330 (24.7%) 1561 (29.0%)
Adult level I 2691 (17) 561 (20.8%) 47 (1.7%) 152 (5.6%) 653 (24.3%)
Adult level II 1582 (39) 515 (32.6%) 61 (3.9%) 144 (9.1%) 619 (39.1%)

N: total number of patients; i: number of injured patients; CT: computed tomography; MRI: magnetic resonance imaging.
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the injured patients received CT scans. Out of the 9533 uninjured pa-
tients in our dataset, 1722 (18.06%) received CT scans and 2736
(28.70%) received at least one form of imaging (CT, MRI, and x-rays).
Table 2 shows a breakdown of the true imaging decisions for each hos-
pital type, stratified by trauma level designation and pediatric setup
(standalone children's hospital or general hospital).

2.2. Loss function calibration

The model fitting process began by calibrating the misclassification
rate to appropriately bias the loss function toward the correct identifica-
tion of injuries over noninjuries. The OCT algorithm was used to fit trees
on a training dataset using various injury weights, ranging from 50 to
500. Fig. 1 illustrates the effect of injury weight on key performancemet-
rics, evaluated on a separate test set. The keymetrics of interest are sensi-
tivity and specificity, which are indicative of the rates of missed injuries
and missed noninjuries, respectively. The highest priority is achieving
high sensitivity, but it is also important to maintain reasonable specificity
to avoid unnecessary imaging. Negative predictive value (NPV) is also
compared, but this is not a differentiating feature in assessingmodel qual-
ity because of the extremely low incidence of injury.

The sensitivity improves and specificity worsens as the injury
weight increases: a higher penalty on false negatives results in fewer
missed injuries but also more uninjured patients labeled as injured.
The sensitivity does not increase beyond a weight of 300 because of
overfitting on the training set as the rare injury events increasingly
dominate the loss function calculation. In addition, the loss in specificity
is relatively modest up to this weight and steeply declines afterward.
Thus, models were trained using weighted misclassification with an in-
jury weight of 300.

2.3. Machine learning models

2.3.1. Optimal trees
After determining the optimal injury weight, the training data were

used to fit a final OCT model. The maximum tree depth and minimum
Fig. 1. Effect of loss function injuryweight on predictive performance. AUC: area under the
curve; NPV: negative predictive value.
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bucket size were tuned through cross-validation, with the final chosen
parameters as tree depth of 2 andminimum leaf size of 25. The resulting
tree in Fig. 2 is simple and highly interpretable. The model predicts in-
jury for patients with a total Glasgow Coma Score (GCS) of ≤13 or age
above 2.58 years (approximately 31 months), and otherwise predicts
no injury.

2.3.2. Gradient-boosted trees
The gradient-boosted trees algorithm returns a predicted injury

probability for each patient. This is converted into a class prediction by
choosing a threshold above which patients are labeled as injured. The
thresholdwas chosen as .00439 since it is theminimizer of theweighted
misclassification error. The model ranks GCS total score, GCS motor
score, and patient age as the threemost important variables, but no fur-
ther interpretation of the prediction is available.

2.3.3. Logistic regression
The final logistic regression model predicts injury probability as a

linear combination of the features. Higher injury probabilities are
assigned to older children, females, fall or motor vehicle mechanisms
of injury, and lower GCS scores. Thismethod assumes an underlying lin-
ear structure and is unable to capture complexities in interactions be-
tween the variables.

Allmodelswere trained and validated using a random sample of 75%
of the patients in this dataset. The remaining patients were set aside as a
test group to evaluate the final models.

2.4. Outcomes

The outcomes on the full dataset are reported for all methods in
Table 3. The OCT model reports a sensitivity of 93.28% on the full
dataset: 111 of the 119 cervical spine injuries are correctly recovered
in the model. It achieves a specificity of 82.34% and AUC of 90.43%. At
the chosen injury thresholds, OCT obtains comparable sensitivity to
the other twomethods and significantly outperforms logistic regression
in specificity. While it has a slightly lower specificity than gradient-
boosted trees, the loss is marginal compared to OCT's gain in interpret-
ability and delineation of an explicit decision rule.
Fig. 2. Final Optimal Classification Tree.
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Table 3
Comparison of machine learning methods on the full dataset.

Sensitivity Specificity AUC

Optimal classification trees 93.28% 82.34% 90.43%
Gradient-boosted trees 94.96% 84.66% 96.69%
Logistic regression 95.8% 70.63% 94.06%

Fig. 3. Comparison of methods by sensitivity and specificity. OCT: Optimal Classification
Trees.
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3. Discussion

The models developed in this paper provide an algorithmic ap-
proach to assessing cervical spine injury risk for patients under the
age of three. Of the considered algorithms, OCT offers the best balance
of performance and interpretability. The final OCTmodel predicts cervi-
cal spine injury incidence based on two basic features from a trauma ex-
amination, GCS score and patient age. The simplicity of the model
suggests that patient outcomes can be predicted with high accuracy
using only basic exam findings, even before considering the more gran-
ular information that might be available to a clinician. The high inter-
pretability of the clinical decision rule makes it a viable tool for real-
time use in trauma settings.

Thismodel has strongperformance in identifying cervical spine inju-
ries while avoiding unnecessary imaging on uninjured patients. As re-
ported above, the OCT model has a sensitivity of 93.28% and specificity
of 82.34%, which translates to imaging for 17.66% of uninjured patients.
The true CT scan decisions at the contributing sites yield a sensitivity of
65.55% and specificity of 81.94%, which translates to imaging for 18.06%
of uninjured patients. The proposed model offers a slight advantage
over the true physician decisions as measured by CT imaging rates for
uninjured patients, and it has a clear edge in identifying injured patients
who need imaging as measured by the sensitivity. When considering
the combination of CT scans, MRIs, and x-rays, the true physician imag-
ing decisions have a sensitivity of 85.71% and specificity of 71.31%. This
indicates that 28.69% of uninjured patients received some sort of imag-
ing. These results demonstrate thatwhen considering imaging decisions
more broadly, the OCT model offers a meaningful advantage in both
sensitivity and specificity. Overall, the algorithmic approach achieves a
notable reduction in overall imaging rates and comparable CT scan
rates when compared to the true treatment decisions.

3.1. Comparison to other methods

The 2009 PEDSPINE study developed the only known cervical spine
injury clearance protocol for patients younger than 3 years that does not
rely on imaging [12]. In thismodel, a patient's risk score ranges from0 to
8 and is calculated using four independent clinical predictors of CSI: GCS
total score b 14 (3 points), GCS eye score = 1 (2 points), mechanism of
injury = motor vehicle crash (2 points), and age = 2 years or older (1
point). Patients with a score of 0 or 1 are predicted to be uninjured,
and higher scores are predicted to be injured and thus result in a recom-
mendation of imaging. The PEDSPINE model is largely consistent with
the tree presented in this paper: both identify an increased risk of injury
for patientswithGCS total scores lower than 13 aswell as older patients.
While these are the only factors in our model, PEDSPINE also assigns
higher risk to patients with a low GCS eye subscore or motor vehicle ac-
cident (MVA) cause of injury.

An out-of-sample comparison of allmodels is presented in Fig. 3. The
ROC curve is plotted for all candidate probability thresholds where ap-
plicable, and the symbols indicate the performance at the threshold
chosen based on the weighted misclassification rate. Our model offers
similar or superior performance in both of the keymetrics. In particular,
when considered against the PEDSPINE protocol, the OCT model yields
comparable injury identification rates with a notable reduction in un-
necessary imaging for uninjured patients. The proposed OCT model
would save 1506 scans among the 9533 uninjured patients in the
dataset. This is accomplished with a simpler model that relies on
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fewer clinical features and attests to the power of machine learning to
discern trends that may be obscured with traditional statistical
approaches.

3.2. Clinical implications and recommendations

According to our analysis, patients with GCS N13 and age less than
2.5 years have an exceptionally low risk of being injured. Using these
criteria to clinically clear cervical spines, we primarily aim to reduce ex-
cessive CT scanning which is the most dangerous imaging modality in
terms of ionizing radiation. However, reducing overall imaging is also
important from a resource utilization and effective patientmanagement
standpoint. Indeed, it is well proven that plain films miss significant in-
juries and CT is a more appropriate and accurate test when there is true
concern about the c-spine. Of note, level II adult trauma centers (39.1%)
imaged nearly 10% more patients compared to level I pediatric centers
(29.4%), Therefore, our guideline may have the largest impact in less
specialized trauma centers.

Although the OCT model achieved impressive predictive perfor-
mance, it is not a substitute for comprehensive clinical assessment. As
previously acknowledged, 111 of the 119 cervical spine injuries were
correctly recovered in the model. It is important to note that no statisti-
cal algorithm or any imaging test can reach 100% sensitivity; meaning
that there is potential for missed injuries with any and all available sup-
port tools. In linewith current clinical practice (using imaging), thema-
chine learning approaches presented in this paper are meant to provide
additional clinical support. In the case of equivocal clinical findings, de-
cision making should default to clinical judgment.

3.3. Limitations

Our study has several limitations owing to its retrospective, multi-
institutional, and multinational nature. First, we analyzed only basic clin-
ical data, because the collection of more complex parameters was subject
to wide variability among institutional trauma registries. Therefore, po-
tentially useful information on hemodynamic presentation, associated in-
juries, detailed clinical signs and symptoms was not collected.

From a statistical standpoint, the infrequency of cervical spine injury
occurrence in the dataset presents a challenge in developing machine
learning approaches for this clinical setting. The model is at risk of
overfitting the data and identifying injury indicators that are in fact sim-
ply characteristics of our injured patient sample and not generalizable
to broader CSI clearance in the population. We used low depth trees
and enforced a minimum sample size in each leaf to limit this issue.

Lastly, the data used in this study were collected from 1994 to 2004.
Imaging protocols and child safety policies such as seatbelt laws have
changed over the past 20 years, and thus there may be differences in
f Jerusalem from ClinicalKey.com by Elsevier on September 
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the population of pediatric trauma patients with blunt head injury, as
well as differences in injury detection and imaging protocols. In future
work, we hope to conduct a similar analysis with an updated dataset
using recent patient records to more accurately reflect the current set-
ting of CSI clearance.

4. Conclusions

Overall, the OCT algorithm allows us to accurately identify under-
standable predictors of cervical spine injuries while imposing minimal
structure on the model features and distribution. This nonparametric
approach provides value in several ways. In cases such as this paper, it
provides data-drivenvalidation of relativelywell-understood predictors
of cervical spine injury. This results in more rigorous and evidence-
based clinical decision protocols and lessens the reliance on varied
physician experience and knowledge. Furthermore, this approach can
identify novel predictors and interactions between features. This is par-
ticularly valuable in settings that lackmedical consensus ondiagnosis or
treatment protocol.

The results from this paper demonstrate the potential for broader
application of Optimal Trees in clinical decision recommendations.
Through the construction of a readily interpretable and globally optimal
decision tree, the OCT algorithm is well-suited for medical decision-
making settings; it illustrates the power of developing methods that
bridge the gap between interpretability and modern machine learning.
In future work, we hope to extend this framework to other pediatric
trauma settings.
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